An E. coli promoter that is sensitive to visible light.
نویسندگان
چکیده
منابع مشابه
Characterization of an Escherichia coli K12 mutant that is sensitive to chlorate when grown aerobically.
Escherichia coli can normally grow aerobically in the presence of chlorate; however, mutants can be isolated that can no longer grow under these conditions. We present here the biochemical characterization of one such mutant and show that the primary genetic lesion occurs in the ubiquinone-8-biosynthetic pathway. As a consequence of this, under aerobic growth conditions the mutant is apparently...
متن کاملIsolation of an Aptamer that Binds Specifically to E. coli
Escherichia coli is a bacterial species found ubiquitously in the intestinal flora of animals, although pathogenic variants cause major public health problems. Aptamers are short oligonucleotides that bind to targets with high affinity and specificity, and have great potential for use in diagnostics and therapy. We used cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-...
متن کاملCompilation of E. coli mRNA promoter sequences.
An updated compilation of 300 E. coli mRNA promoter sequences is presented. For each sequence the most recent relevant paper was checked, to verify the location of the transcriptional start position as identified experimentally. We comment on the reliability of the sequence databanks and analyze the conservation of known promoter features in the current compilation. This database is available b...
متن کاملEngineering an E. coli Near-Infrared Light Sensor.
Optogenetics is a technology wherein researchers combine light and genetically engineered photoreceptors to control biological processes with unrivaled precision. Near-infrared (NIR) wavelengths (>700 nm) are desirable optogenetic inputs due to their low phototoxicity and spectral isolation from most photoproteins. The bacteriophytochrome photoreceptor 1 (BphP1), found in several purple photosy...
متن کاملA fast, visible-light-sensitive azobenzene for bioorthogonal ligation.
Azobenzenes have been used as photoresponsive units for the control of numerous biological processes. Primary prerequisites for such applications are site-selective incorporation of photoswitchable units into biomolecules and the possibility of using non-destructive and deep-tissue-penetrating visible light for the photoisomerization. Here we report a push-pull azobenzene that readily undergoes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Japanese Journal of Genetics
سال: 1990
ISSN: 0021-504X,1880-5787
DOI: 10.1266/jjg.65.381